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Abstract
In this paper we analyse the canonical forms into which any pure three-qubit
state can be cast. The minimal forms, i.e. the ones with the minimal number of
product states built from local bases, are also presented and lead to a complete
classification of pure three-qubit states. This classification is related to the
values of the polynomial invariants under local unitary transformations by a
one-to-one correspondence.

PACS numbers: 03.67.-a, 03.65.Ta

1. Introduction

Non-local quantum correlations or entanglement between space-separated parties is one of the
most fertile and thought-generating properties of quantum mechanics. Recently it has become
a very useful resource for many of the applications in quantum information theory and this has
led to a lot of work devoted to understanding how it can be quantified and manipulated.

Bipartite pure state entanglement is almost completely understood, while many questions
are still open for the mixed state case. For pure states, the Schmidt decomposition [1] has
proven to be a very useful tool, since it allows us to write any pure state shared by two parties
A and B in a canonical form, where all the information about the non-local properties of the state
is contained in the positive Schmidt coefficients. The non-local properties of quantum states
can be also specified by means of other quantities invariant under the action of local unitary
transformations. An interesting type of these invariants is given by polynomial combination
of the coordinates of the state in a product basis, and the relation between these invariants and
the Schmidt coefficients is well known.

Some novel aspects, compared to the bipartite case, appear for entangled systems of
more than two parties. In this paper we study the canonical forms of three-qubit pure
states, extending the results of bipartite systems. First we analyse the forms proposed for
generalizing the Schmidt decomposition for three-qubit pure states. Then, we relate one of
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these decompositions to the polynomial invariants studied in [2–9]. We give a one-to-one
correspondence between a canonical form for a three-qubit pure state and a complete set of
polynomial invariants describing its entanglement properties. We also classify the different
types of canonical form by means of the minimal number of local basis product states (LBPSs),
i.e. the minimal number of non-local parameters, needed for the specification of a state. For
any three-qubit pure state we give its decomposition with the minimal number of LBPS and
the procedure that has to be applied in order to build it. Finally we indicate how to generalize
the results to systems of N qubits, where many difficulties arise.

2. Generalization of the Schmidt decomposition

The Schmidt decomposition has been a very useful tool for the study of entanglement properties
of bipartite systems. For a generic bipartite pure state |�〉 ∈ Cd1 ⊗ Cd2 it reads

|�〉 =
l∑

i=1

αi |ii〉 αi � 0 (1)

where l = min(d1, d2), |ii〉 ≡ |i〉A ⊗ |i〉B, there being |i〉 orthonormal vectors in each
subsystem, and αi are the Schmidt coefficients. It would be very interesting to find for
three-qubit pure states a canonical decomposition generalizing the features of the Schmidt
decomposition. However, the trivial generalization is not possible [10] and it is not evident
how to extend the Schmidt decomposition to the case of N -party systems (N > 2). Indeed
several forms have been proposed (see for instance [11]).

In recent work [9] we gave a generalization of the Schmidt decomposition for three-qubit
pure states, in the sense that the coefficients of this decomposition carry all the information
about the non-local properties of the state, and do so minimally and unambiguously, i.e. the
decomposition is not superflous. Starting from a generic state shared by three parties, A, B
and C,

|�〉 =
∑
i,j,k

tijk|ijk〉 (2)

where |ijk〉 ≡ |i〉A ⊗ |j〉B ⊗ |k〉C, we look for the local bases that allow us to write (2) with
the minimal number of LBPSs. A simple counting of parameters shows that at least five
product states built from local bases are needed in order to specify a generic state belonging to
C2 ⊗C2 ⊗C2. There are three inequivalent classes of five LBPSs: the first one is the symmetric
set

{|000〉, |001〉, |010〉, |100〉, |111〉} (3)

the second is given by

{|000〉, |001〉, |100〉, |110〉, |111〉}
{|000〉, |001〉, |011〉, |100〉, |111〉}
{|000〉, |010〉, |100〉, |101〉, |111〉}

(4)

and the third one corresponds to the three sets

{|000〉, |100〉, |101〉, |110〉, |111〉}
{|000〉, |010〉, |011〉, |110〉, |111〉}
{|000〉, |001〉, |011〉, |101〉, |111〉}

(5)

where the three sets of states of (4) are related by permutation of the parties, and the same
happens for the sets (5). The non-equivalence between the sets (3)–(5) follows from the
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Figure 1. The figure depicts the three inequivalent sets of states given by (3), (4) and (5).

different degrees of orthogonality between the five states within each set (see figure 1). All
other sets of five LBPS, including the other states obtained from (4) by permutation of the
parties, are related to one of the above by a local relabelling of the basis states |0〉 ↔ |1〉.
In [9] it was proved that any three-qubit state can be written in terms of the product states of
any of the asymmetric sets, (4) or (5). Let us sketch the procedure.

Starting from a generic state (2), one introduces the matrices T0 and T1 with elements

(Ti)jk ≡ tijk. (6)

A change of basis on the first qubit transforms these matrices in the following way:

T ′
0 = uA

00T0 + uA
01T1

T ′
1 = uA

10T0 + uA
11T1

(7)

where uA
ij are the elements of a unitary matrix, while the effect of a change of basis in B

(C) implies that each Ti is left (right) multiplied by a unitary matrix UB (UC). The unitary
transformation on party A is chosen such that

det(T ′
0) = 0. (8)

There are always two solutions for this equation since (8) is equivalent to

det(T0 + xT1) = 0 (9)
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where x ≡ uA
01

uA
00

is an unbounded complex number. Now we apply two unitary matrices on

parties B and C in order to diagonalize T ′
0. These operations lead to the matrices

M0 ≡ UBT ′
0U

C =
(
λ0 0
0 0

)

M1 ≡ UBT ′
1U

C =
(
λ1eiϕ λ2

λ3 λ4

) (10)

where λi are real and positive, since all the phases have been absorbed by phase redefinitions
of |0〉A, |1〉A, |1〉B and |1〉C. By means of these unitary transformations we have been able to
write the initial state (2) in terms of the product states appearing in the first set of (5), i.e.

|�〉 = λ0|000〉 + λ1eiϕ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉. (11)

Equation (9) has generically two different solutions, x and x̄, so two different
decompositions (11) are possible for the same state |�〉. By limiting the range of the phase
factor to 0 � ϕ � π a unique solution is found when 0 < ϕ < π (see [9] for more details), and
then we have a unique canonical form in which to cast almost any three-qubit pure state. For
the remaining ones, when ϕ = 0, π , two canonical forms exist in general; we will break this
remaining degeneracy, taking, for instance, the form with the smallest λ1, or, if λ1 is unique,
taking the form with the smallest λ0. It is important also to note that we have singled out party
A in obtaining (11), but we could have chosen any of the three parties.

From (11) and by applying a unitary transformation on the third qubit,

|0′〉 = 1√
λ2

1 + λ2
2

(λ1eiϕ|0〉 + λ2|1〉) (12)

it follows that any state can be written, after removing the phases of four of the coefficients, as

|�〉 = η0eiφ|000〉 + η1|001〉 + η2|100〉 + η3|110〉 + η4|111〉 (13)

with ηi real and positive, which corresponds to the first set in (4).
Recently, it has been shown [12] that the symmetric decomposition using the set of

states (3) is also possible. The proof is based on the fact that if a given state |�〉 is written in
a basis such that the state |111〉 is the one that maximizes the overlap of |�〉 with any product
state, i.e.

|t111|2 = max |〈�|αβγ 〉|2 (14)

the coefficients t110, t101 and t011 must be zero (otherwise one could find a product state with a
larger overlap). Therefore any state can be written as

|�〉 = κ0eiθ |000〉 + κ1|001〉 + κ2|010〉 + κ3|100〉 + κ4|111〉 (15)

with κi real and positive and 0 � θ < π . Nevertheless, the conditions under which the
decomposition (15) is unique are not known.

A different decomposition, which can also be thought of as an alternative generalization of
the Schmidt decomposition for three-qubit states, could be writing the state as a superposition
of two product states, not necessarily orthogonal,

|�〉 = α|000〉 + βeiδ|ϕ1ϕ2ϕ3〉 (16)

with α and β positive real numbers. This decomposition is only possible when J4 
= 0 (see
below for the definition of J4) [9, 13], which corresponds to the GHZ class in [13], and it has
been proved very useful for obtaining the optimal GHZ distillation protocol [14].
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3. The set of polynomial invariants

The space of states of three qubits is C2 ⊗ C2 ⊗ C2, which depends on 16 real parameters
(including the norm and the global phase). Two states, |�1〉 and |�2〉, are equivalent, as far
as their entanglement properties are concerned, when they can be transformed one into the
other by local unitary transformations. Therefore the action of the elements of the group
U(1) × SU(2) × SU(2) × SU(2) defines orbits in the space of states, each orbit being the
equivalence class of all the states having the same non-local properties. Thus, and as is well
known, the dimension of a generic orbit for the case of three-qubit pure states is ten [2], so six
entanglement parameters should be enough to discriminate between two different orbits. Since
the decomposition (11) is unique, it gives six quantities invariant under local unitaries, the five
coefficients λi and the phase ϕ, which allow us to check whether two generic states belong
to the same orbit, i.e. whether they can be connected applying local unitary transformations.
These parameters can be thought of as the entanglement coordinates. An alternative, though
twofold degenerate, set of entanglement parameters is given by polynomial combinations of
the coefficients tijk which are invariant under the group of local unitaries [2–8]. In this section
decomposition (11) will be related to these polynomial invariants.

For bipartite pure states, |�〉 ∈ Cd1 ⊗ Cd2 , a complete set of polynomial invariants, which
allows us to know whether two bipartite states have the same entanglement properties, is given
by

tr(ρl
A) = tr(ρl

B) l = 1, . . . ,min(d1, d2) (17)

where ρA ≡ trB |�〉〈�| and ρB ≡ trA |�〉〈�| are the local density matrices. Since the
eigenvalues of these matrices correspond to the square of the Schmidt coefficients (1), we
know the relation between the polynomial invariants and the Schmidt decomposition [7].

As has been mentioned above, the space of entanglement parameters of pure three-qubit
states has dimension equal to six, so at least six linearly independent polynomial combinations
of tijk invariant under local unitary transformations are needed in order to specify the non-
local properties of a state, or the orbit which it belongs to. In [7] the six linearly independent
polynomial invariants of minimal degree were found. The norm is a trivial one, so we will not
consider it and in the rest of the paper we will restrict ourselves to the space of normalized
states, the number of non-local parameters being reduced to five. This implies that we have∑

i λ
2
i = 1 in (11). Apart from the norm, the polynomial invariants given in [7] are

1
2 � I1 ≡ tr(ρ2

A) � 1
1
2 � I2 ≡ tr(ρ2

B) � 1
1
2 � I3 ≡ tr(ρ2

C) � 1
1
4 � I4 ≡ tr(ρA ⊗ ρBρAB) � 1
0 � I5 ≡ |Hdet(tijk)|2 � 1

16

(18)

where

ρA ≡ trBC |�〉〈�|
ρB ≡ trAC |�〉〈�|
ρC ≡ trAB |�〉〈�|
ρAB ≡ trC |�〉〈�|

(19)

and Hdet(tijk) is the hyperdeterminant of the coefficients tijk [15]3 and corresponds to the

3 Its explicit form is Hdet(tijk) = t2
000t

2
111 + t2

001t
2
110 + t2

010t
2
101 + t2

100t
2
011 −2(t000t111t011t100 + t000t111t101t010 +

t000t111t110t001 +t011t100t101t010 + t011t100t110t001 + t101t010t110t001) +4(t000t110t101t011 + t111t001t010t100).
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three-tangle of [16]. An equivalent set of invariants can be constructed [9]

J1 ≡ 1
4 (1 + I1 − I2 − I3 − 2

√
I5)

J2 ≡ 1
4 (1 − I1 + I2 − I3 − 2

√
I5)

J3 ≡ 1
4 (1 − I1 − I2 + I3 − 2

√
I5)

J4 ≡
√
I5

J5 ≡ 1
4 (3 − 3I1 − 3I2 − I3 + 4I4 − 2

√
I5)

(20)

which, in terms of the parameters of the decomposition (11), are equal to

0 � J1 = |λ1λ4eiϕ − λ2λ3|2 � 1
4

0 � J2 = µ0µ2 � 1
4

0 � J3 = µ0µ3 � 1
4

0 � J4 = µ0µ4 � 1
4

− 1
108 � J5 = µ0(J1 + µ2µ3 − µ1µ4) � 2

27

(21)

where µi ≡ λ2
i . It can be proved that J4 and J5 are invariant under permutation of the parties,

because so are 2I4 −I1 −I2 and I5, and J1, J2 and J3 single out parties A, B and C respectively,
and transform among themselves under party permutation.

From the above expressions one can prove the tighter bounds

0 � J2 + J3 + J4 � 1
4

0 � J1 + J3 + J4 � 1
4

0 � J1 + J2 + J4 � 1
4

0 � J4 + J5 � 1
4 .

(22)

Also the following holds:

J1 = 0 ⇒ J5 = 0

J2 = 0 ⇒ J5 = 0

J3 = 0 ⇒ J5 = 0

J4 = 0 ⇒
√
J1J2J3 = J5

2
.

(23)

From (21) and using the normalization condition
∑

i µi = 1, it is possible to obtain the
value of the set of coefficients {µi},

µ±
0 = J4 + J5 ± √

'J

2(J1 + J4)

µ±
i = Ji

µ±
0

i = 2, 3, 4

µ±
1 = 1 − µ±

0 − J2 + J3 + J4

µ±
0

(24)

where

'J ≡ (J4 + J5)
2 − 4(J1 + J4)(J2 + J4)(J3 + J4) � 0 (25)

which implies

J4 + J5 = 0 ⇒ J4 = J5 = 0. (26)

Note that the value of cosϕ can be also found from (21),

cosϕ± = µ±
1 µ

±
4 + µ±

2 µ
±
3 − J1

2λ±
1 λ

±
2 λ

±
3 λ

±
4

(27)
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and thus almost all the information about the decomposition can be extracted from the values
of the {Ji}. There remains however some ambiguity in these expressions, since there are two
solutions for the coefficients, corresponding to µ+

0 and µ−
0 , and for each of them, two different

angles, 0 � ϕ± � π and ϕ̃± = 2π − ϕ±, originating from (27). Part of this uncertainty is
due to the two solutions of (8) and in fact the coefficients {µ+

i , ϕ
+} and {µ−

i , ϕ̃
−} describe the

same orbit, and the same happens for {µ−
i , ϕ

−} and {µ+
i , ϕ̃

+}. As has been said, the solutions
associated with ϕ̃ are not considered because of the range of the angle. However the set of
invariants {Ji} (or {Ii}) does not determine a unique orbit, or equivalently a canonical point
representing it. Two candidates are possible, {µ±

i , ϕ
±}, so there is still some ambiguity left.

The five polynomial invariants (18) are real, and this means that they cannot distinguish
among the orbits associated with a given pure three-qubit state |�〉, with coefficients tijk , and
with |�〉∗, given by t∗ijk . Indeed,

Ii(|�〉∗) = Ii(|�〉)∗ = Ii(|�〉) (28)

where the second equality comes from the fact that the invariants are real. It is not possible,
due to this ambiguity, to individuate a unique canonical state representing an orbit from the
invariants (18), or (20). A 12th-degree complex polynomial invariant, I6, introduced by
Grassl [17], solves (albeit redundantly) this problem, just by inspection of the sign of its
imaginary part (in other words, the second equality of (28) is not valid for this invariant). The
explicit form of Grassl’s invariant can be found in appendix A, and using decomposition (11)
it reads

I6 = µ2
0µ4(λ4(1 − 2(µ0 + µ1)) + 2λ1λ2λ3e−iϕ)2. (29)

The set given by (18) and I6 is complete; it allows us to check when two states belong to
different orbits, and from their values one can obtain a unique canonical point representing the
orbit applying (24)–(27) and, in the end, using I6 to discriminate between the two candidates.

This situation is quite different from what happens for pure states of bipartite systems. In
this case, a generic state |�〉 ∈ Cd1 ⊗ Cd2 , with coefficients tij , can be always transformed into
|�〉∗ by local unitary transformations, as is clear from the fact that all the Schmidt coefficients
are real. In general this is not true for three-qubit systems, although in some cases the state
|�〉 and its complex conjugate |�〉∗ are in the same orbit. This corresponds to the situations
when either

| cosϕ+| = | cosϕ−| = 1 (30)

or

cosϕ+ = cosϕ−

µ+
i = µ−

i .
(31)

Equivalent conditions in terms of the invariants {Ji} can be obtained, giving
√
J1J2J3 = |J5|

2
(32)

for the first case and

'J = 0 (33)

for the second. Furthermore in both situations a product basis can be found for which all the
coefficients tijk are real. For the states satisfying the first condition, this basis is the one that
gives decomposition (11), since we have eiϕ = ±1, while in the second case the proof is a
little more tedious and is given in appendix B. From these results, then, it follows that

|�〉 ∼ |�〉∗ ⇔
√
J1J2J3 = |J5|

2
or 'J = 0 ⇔ |�〉 real (34)
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where a pure state belonging to C2 ⊗ C2 ⊗ C2 is said to be real when there exists a product
basis where all the coefficients are real.

To summarize, five independent quantities invariant under local unitaries are needed to
specify the non-local properties of a generic three-qubit pure state. The coefficients appearing
in the decomposition (11) form a complete faithful and minimal set of such invariants, when
constrained as explained after (11). The polynomial invariants given in (18) must be completed
with I6 in order to solve the ambiguity between the orbits associated with |�〉 and |�〉∗,
and from the values of these polynomial invariants one can build a unique canonical point
representing the orbit. Also when |�〉 and |�〉∗ are in the same orbit there exists a product
basis where all the coordinates of |�〉 are real, as happens for pure states of bipartite systems.

Let us mention finally that any real state can be written with real coefficients in terms of a
set of six LBPSs, adding the state |011〉 to (3) or to the first of (5). This is done by diagonalizing
T0 with two orthogonal matrices.

4. Minimal decomposition

We have seen that a generic three-qubit pure state can always be written in terms of five product
states from any of the sets of states in (3), (4) or (5). However it is not clear which set should
be used to find the minimal decomposition, that is, the one with the least number of non-local
parameters. The minimal number of LBPSs needed to specify a state |�〉 will be denoted by
ν(�). We know that in general ν = 5 but now we want to analyse the cases in which ν < 5. In
this section we present a complete classification of the three-qubit pure states according to this
minimal number of product states. We also give necessary and sufficient conditions written in
terms of the invariants {Ji} to be satisfied by the states of each class. The number of non-local
parameters in each family is ν − 1, since all the coefficients are real. All the families satisfy
condition (32).

4.1. ν = 4

There are several subfamilies of states that allow for a decomposition in terms of four LBPSs.

Type 4a. This subfamily is given by the states with µ4 = 0 in (11). It is easy to prove that
this condition is equivalent to J4 = 0 (we will take the rest of the invariants different from
zero, unless otherwise specified). Condition (32) is also satisfied with J5 > 0, since all the
phases can be absorbed.

Type 4b. States with µ2 = 0 (µ3 = 0) in (11). The equivalent conditions in terms of the
invariants are J2 = J5 = 0 (J3 = J5 = 0). Let us mention that there is an apparent lack of
symmetry in this subfamily, but this is due to the fact that party A has been singled out in the
determinations of the decomposition (11). In fact the analogous states with J1 = J5 = 0 are
written with four terms if either party B or C is singled out in (7)–(10).

Type 4c. States with µ1 = 0 in (11). It can be proved that the corresponding conditions in
terms of the invariants are J1J4 + J1J2 + J1J3 + J2J3 = √

J1J2J3 = J5
2 . Again the lack of

symmetry is due to the fact that party A is privileged in the calculation of the decomposition (11).
An analogous condition can be found by interchanging the role of the indices 1, 2 and 3, which
means that the minimal decomposition is obtained if one of the other two parties is singled out
in (7)–(10).
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Type 4d. States with κ0 = 0 in (15). It is proved in appendix C that the corresponding
condition, apart from (32), which is always satisfied when ν < 5, is 'J = 0.

4.2. ν = 3

Now we move to the study of those states that can be expressed as a sum of three LBPSs.

Type 3a. This subfamily is given by taking µ1 = µ4 = 0 in (11). The equivalent conditions
for the invariants are J4 = 0 and J1J2 + J1J3 + J2J3 = √

J1J2J3 = J5
2 .

Type 3b. These states correspond to the case µj = µk = 0 in (11), for j, k ∈ {1, 2, 3} and
j 
= k. These conditions expressed in terms of the invariants are Jj = Jk = J5 = 0.

4.3. ν = 2

The states with two product states built from local bases are just in two classes.

Type 2a. Ji = 0 except J1(J2, J3), and these are the states where party A (B, C) is not
entangled with the other two parties, so there is not truly three-party entanglement.

Type 2b. Ji = 0 except J4, they include the standard GHZ state.

4.4. ν = 1

Type1. Ji = 0, and these are the product states where there is no correlation between the
parties.

4.5. Summary

All the states belonging to C2 ⊗ C2 ⊗ C2 have been classified in terms of the minimal number,
ν, of LBPSs required to express the state, and the resulting families of states are shown in
table 1. Generically five terms are needed, although there are cases where ν < 5. Necessary
and sufficient conditions in terms of the set of invariants {Ji} are given, which can be used to
recognize the subfamily a three-qubit pure state belongs to. Once this has been done, we have
provided the procedure that has to be applied in order to find this minimal decomposition with
product states.

5. Generalization to more parties

The decomposition (11), which generalizes the bipartite Schmidt decomposition, has been
proved to be very fruitful for the case of three-qubit pure states, so it will be convenient to
know the way it can be generalized to more parties. In this section first we will consider with
some details the case of four-qubit systems and this will give us insight into the difficulties
found when we try to extend our results.

The procedure to be applied for the generalization of decomposition (11) for pure states
belonging to C2 ⊗ C2 ⊗ C2 ⊗ C2, i.e. states |�〉 = ∑

i,j,k,l tijkl|ijkl〉 shared by four parties A,
B, C and D, will be now described. First we define the two hypermatrices [15]

(Ti)jkl ≡ tijkl (35)
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Table 1. Classification of three-quantum-bit states. For the types of state denoted by 4b, 4c, 3b
and 2a, there exist analogous conditions interchanging the roles of the invariants J1, J2, J3, and
consequently the product states used in the minimal decomposition.

Type Conditions States

4a J4 = 0,
√
J1J2J3 = J5

2
|000〉, |100〉, |101〉, |110〉

4b J2 = J5 = 0 |000〉, |100〉, |110〉, |111〉
4c J1J4 + J1J2 + J1J3 + J2J3

=√
J1J2J3 = J5

2
|000〉, |101〉, |110〉, |111〉

4d 'J = 0,
√
J1J2J3 = |J5|

2
|001〉, |010〉, |100〉, |111〉

3a J1J2 + J1J3 + J2J3

=√
J1J2J3 = J5

2
, J4 = 0 |000〉, |101〉, |110〉

3b J1 = J2 = J5 = 0 |000〉, |110〉, |111〉
2a All Ji = 0 apart from J1 |000〉, |011〉
2b All Ji = 0 apart from J4 |000〉, |111〉
1 Ji = 0 |000〉

which means that the initial state is interpreted as

|�〉 = |0〉|φ0〉 + |1〉|φ1〉 (36)

where |φi〉 are, up to normalization, three-qubit pure states, their coordinates being given by
the elements of the corresponding hypermatrix Ti . The effect of the change of local bases is
very similar to the one described for three-qubit systems: a unitary transformation on system A
mixes the coordinates of the two |φi〉, while unitary transformations on the rest of subsystems
can be used to make some of their coefficients zero. Now we apply the change of local bases
on A that gives

Hdet(T ′
0) = 0 (37)

and afterwards unitary transformations on B, C and D are used to write the new |φ′
0〉 in the

canonical decomposition found for three-qubit pure states. Since (37) is verified, it is known
that |φ′

0〉 belongs to, at least, type 4a states, so we will manage to write the initial state |�〉 in
terms of the 12 product states:

|0000〉, |0100〉, |0101〉, |0110〉
|1000〉, |1001〉, |1010〉, |1011〉
|1100〉, |1101〉, |1110〉, |1111〉.

(38)

A simple counting of parameters gives that the minimal number of LBPSs needed to specify
a state |�〉 ∈ C2 ⊗ C2 ⊗ C2 ⊗ C2 is exactly 12. The decomposition we have found depends
on 24 non-local parameters but it is known that by phase redefinitions, i.e. acting locally with
U(1), five phases can be absorbed (generically, for N parties N + 1 coefficients can be made
real), so the number of non-local parameters is 19 (including the norm), as expected [2].

However some problems arise in this case. Many decompositions in terms of the set
of states (38) are possible for the same state. In fact (37) is a fourth-degree equation, so
four solutions will be found and from these solutions four different decompositions will be
derived. For the case of the three-qubit pure state there were two solutions for (8), but we
managed to obtain a unique decomposition by limiting the range of ϕ. A similar reasoning
seems not to be trivial for this case. Furthermore for pure four-qubit states more inequivalent
sets of 12 product states appear, and this will make difficult the analysis of the minimal
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decomposition. The generalization of decomposition (11) to N -qubit pure states (N > 3) is
then quite cumbersome.

Finally, it has to be noted that the algorithm proposed in [12] for the decomposition (15)
can be also extended to higher-dimensional systems. Let us mention however that, in any case,
as the dimension of the space increases, the number of coefficients that can be made equal to
zero in any of the decompositions becomes irrelevant.

6. Conclusions

In this paper we have studied the canonical forms of pure three-qubit states, extending the
known results of bipartite systems.

First we show the possible generalizations of the Schmidt decomposition and we relate one
of these decompositions (11) to the polynomial invariants of [2–9]. The six linearly independent
polynomial invariants of [7] are not able to discriminate between the entanglement orbits
associated with a state and its complex conjugate in a product basis. An additional polynomial
invariant introduced in [17] has to be used, and we have seen how to connect this complete
set of polynomial invariants with our generalization of the Schmidt decomposition. Indeed
it is shown how to find a canonical point in a generic orbit described by this complete set of
invariants. Let us mention here that a three-qubit pure state |�〉 and its complex conjugate
|�〉∗ give the same optimal probability of distilling a maximally entangled state of three qubits,
in the single-copy case [14].

We have also looked for the decomposition of any state, |�〉, with the minimal number,
ν(�), of product states built from local bases. Generically this number is equal to five,
although many exceptional states have been found with ν < 5. We have been able to give a
complete classification of these states by means of a set of necessary and sufficient conditions
written in terms of the set of invariants (20). The procedure to be applied in order to build the
minimal decomposition for every state has been given too. The classification of the pure three-
qubit states in terms of their entanglement properties can be performed following alternative
criteria to that described here, which is based on the features observed acting with the group
of local unitary transformations. A possible approach is to classify the states looking for their
probabilistic conversions under local operations and classical communication (LOCC) for the
single-copy case (see [13] and also [14, 18]) or in the asymptotic regime [19]. It would be
expected that these classifications are a coarse-graining of that presented in this paper. In fact
this is the case for the equivalence classes under LOCC given in [13].

Finally it has been indicated how to extend decomposition (11) to systems of more parties.
A simple counting of parameters shows that at least 2N −N product states built from local bases
are needed in order to specify a generic N -qubit pure state, and for four qubits we succeeded
in finding a procedure that makes four of the coordinates tijkl zero. The decomposition (15)
allows for a simpler generalization. However, in all the cases some difficulties arise, related
to the uniqueness of the decompositions, and it is not clear whether these generalized Schmidt
decompositions are actually useful for composite systems of more than three qubits.
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Appendix A. Explicit form of I6

In this appendix the explicit form of the invariant I6 is given [17]. From a generic state (2),
and its coordinates in a product basis, tijk , one can construct the following quantities, which
are invariant under local unitary transformations in the third party:

[i, j ] ≡ ti0tj1 − ti1tj0

〈i, j〉 ≡ ti0t
∗
j0 + ti1t

∗
j1

(39)

where i, j = 0, . . . , 3, and the corresponding index is written in binary notation. For example,
[2, 0] = t100t001 − t101t000. Defining the functions,

s1 ≡ [1, 2]2 − 2[0, 1][2, 3] − 2[0, 2][1, 3] + [0, 3]2

s2 ≡ [3, 0]〈0, 0〉 − [3, 0]〈3, 3〉 + [3, 1]〈0, 1〉
+[3, 2]〈0, 2〉 + 2[3, 2]〈1, 3〉 − 2[1, 0]〈2, 0〉
−[1, 0]〈3, 1〉 − [2, 0]〈3, 2〉 − [2, 1]〈0, 0〉
−[2, 1]〈1, 1〉 + [2, 1]〈2, 2〉 + [2, 1]〈3, 3〉

(40)

it can be proved [17] that

I6 ≡ s∗
1 s

2
2 (41)

is a complex polynomial combination of the coordinates tijk invariant under local unitary
transformations.

Appendix B. Real states

In this appendix we will show that, given a pure three-qubit state |ψ〉 ∈ C2 ⊗ C2 ⊗ C2, this
state is real, i.e. there exists a product basis for which all coefficients are real, if and only if√
J1J2J3 = |J5|

2 or 'J = 0.
Consider the case of a state |ψ〉 = ∑

i,j,k tijk|ijk〉 where all the tijk are real. Now we will
follow the procedure described by the equations (7)–(10) that gives us the decomposition (11).
Since the initial coordinates are real, from (8) a second degree equation in x with real
coefficients is obtained, and this implies that the two solutions, x and x̄, satisfy that either
they are both real or x = x̄∗. In the first case, the calculation of the decomposition can be
performed using orthogonal matrices, and since the initial coordinates were real, we will obtain
a real decomposition, i.e. ϕ = 0, π , which is equivalent to (32). For the second case, since
x = x̄∗, tr(T ′†

0 T ′
0) = tr(T̄ ′†

0 T̄ ′
0), and then µ0 = µ̄0 and (33) is satisfied.

Now, the inverse has to be proved. For the first case it is clear that all the states verifying (32)
take real coordinates when they are expressed in the basis used in decomposition (11). For the
second case the proof is not so trivial.

Consider a generic state, |φ〉, having 'J equal to zero. The parametrization of this family
of states is simplified using (16), so let us first mention some facts about this decomposition.
As has been shown, any state with J4 
= 0 can be written as (16) [9, 13] where

α = 1

λ4

√
J1 + J4

β = 1

λ4

√
µ2µ3 + µ4(µ4 + µ2 + µ3)

δ = arg (λ1λ4eiϕ − λ2λ3)

(42)

and, up to unitary transformations,

|0〉 =
(

1
0

)
|ϕi〉 =

(
cos γi
sin γi

)
i = 1, 2, 3. (43)
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It can be proved that when 'J = 0 the coefficients α and β are equal and then the states to be
studied are

|φ〉 = α(|000〉 + eiδ|ϕ1ϕ2ϕ3〉). (44)

Recall that for these states the complex conjugate is in the same orbit as the original one, and
this means that

t∗ijk =
∑

v1
iav

2
jbv

3
kctabc (45)

where tijk are the coordinates in some product basis and v1
ia , v2

jb and v3
kc are the elements of

the local unitary matrices, V 1 in A, V 2 in B and V 3 in C, connecting the two states. From (44)
it follows that these unitary operators are

V i = e−iδ′
(
ci si
si −ci

)
(46)

where ci ≡ cos γi , si ≡ sin γi and δ′ ≡ δ
3 (actually, the phase factors in the matrices V i can

be given by arbitrary angles δi satisfying the constraint
∑

i δi = δ, but we choose these angles
for simplicity).

Now we would like to find a product basis for which all the coefficients are real, i.e.

t ′ijk =
∑

w1
iaw

2
jbw

3
kctabc = t ′∗ijk (47)

and from this condition and using (45), we have

V i = (W i)TWi. (48)

The explicit form of each V i , (46), as a product of a phase factor and a real and symmetric
matrix allows us to write them as

V i = e−iδ′
(Oi)T DiOi (49)

where Oi are orthogonal matrices and Di are diagonal matrices with entries ±1. The change
of basis we are looking for then is given by

Wi = (Di)
1
2 Oi = e−iδ′′

(
c̃i s̃i

−is̃i ic̃i

)
(50)

where c̃i ≡ cos γi
2 , s̃i ≡ sin γi

2 and δ′′ ≡ δ
6 . The new coordinates obtained applying these local

changes of basis are, up to normalization,

t ′000 = c̃1c̃2c̃3 cos
δ

2
t ′001 = −c̃1c̃2s̃3 sin

δ

2

t ′010 = −c̃1s̃2c̃3 sin
δ

2
t ′011 = −c̃1s̃2s̃3 cos

δ

2

t ′100 = −s̃1c̃2c̃3 sin
δ

2
t ′101 = −s̃1c̃2s̃3 cos

δ

2

t ′110 = −s̃1s̃2c̃3 cos
δ

2
t ′111 = s̃1s̃2s̃3 sin

δ

2
.

(51)

This ends the proof.

Appendix C. Type 4d

In this section we prove that a three-qubit pure state |ψ〉 can be written as

|ψ〉 = l1|001〉 + l2|010〉 + l3|100〉 + l4|111〉 (52)

with real and positive coefficients, if and only if (32) and (33) are verified.
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Starting from (52) we can apply the procedure given by (7)–(10) to obtain (11). It can be
seen that all the unitary matrices needed for the determination of this decomposition are real,
i.e. they are orthogonal, and since the original coefficients {li} were also real, we will obtain a
real decomposition with (32). Moreover, it can also be proved that the two matrices obtained
after (8), T ′

0 and T̄ ′
0, corresponding to the two solutions of this equation, x and x̄, verify

tr((T ′
0)

†T ′
0) = tr((T̄ ′

0)
†T̄ ′

0). (53)

This condition implies that µ0 = µ̄0, and using (24) we have also (33).
Now we prove the inverse. Consider a state |φ〉 satisfying (32) and (33). Because of the

latter condition, the state allows for a decomposition as (44). Moreover, since (32) is also
satisfied, we have ϕ = 0, π in (11), and this implies, using (42), that δ = 0, π . The generic
expression for a state satisfying both the conditions can now be given,

|φ〉 = α(|000〉 ± |ϕ1ϕ2ϕ3〉). (54)

If we perform the local change of bases described by (50) it can be seen, using (51) and the fact
that δ = 0, π , that the state |φ〉 is of type 4d. Indeed, the new coordinates are, after absorbing
the phases and up to normalization,

l1 = s̃1s̃2c̃3 l2 = s̃1c̃2s̃3 l3 = c̃1s̃2s̃3 l4 = c̃1c̃2c̃3 (55)

for δ = 0, and

l1 = c̃1c̃2s̃3 l2 = c̃1s̃2c̃3 l3 = s̃1c̃2c̃3 l4 = s̃1s̃2s̃3 (56)

for δ = π . Note that the local bases that appear in (52) are the ones that diagonalize the
local density matrices. This gives the procedure to be applied in order to find the minimal
decomposition without performing the maximization of (14), which is generically a more
difficult calculation.
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